高一数学教学计划

时间:2024-05-28 11:41:11
高一数学教学计划(15篇)

高一数学教学计划(15篇)

日子如同白驹过隙,不经意间,前方等待着我们的是新的机遇和挑战,立即行动起来写一份计划吧。相信大家又在为写计划犯愁了?下面是小编为大家收集的高一数学教学计划,仅供参考,欢迎大家阅读。

高一数学教学计划1

一、内容及其解析

1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。

2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。

二、目标及其解析

1。目标

掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。

2。解析

①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。

②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。

③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。

④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。

⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。

三、教学问题诊断分析

1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。

2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。

3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。

四、教法与学法分析

1、教法分析

新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。

2、学法分析

改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。

五、教学过程设计

问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。

问题2:建立直线方程的实质是什么?

[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。

引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?

[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。

问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?

(过与两点的直线的斜率为)

[设计意图]让学生寻找确定直线的条件,体会动中找静。

问题2。2如何将上述条件用代数形式表示出来?

[设计意图]让学生理解和体会用坐标表示确定直线的条件。

用代数式表示出来就是,即。

问题2。3为什么说是满足条件的直线方程?

[设计意图]让学生初步感受直线与直线方程的关系。

此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。

另外以方程的解为坐标的点也在直线上。

所以我们得到经过点,斜率为的直线方程是。

问题2。4:能否说方程是经过,斜率为的直线方程?

[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。

问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?

[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。

问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

[设计意图]引导学生掌握解析几何取点的方法。

引导学生求出直线的点斜式方程

注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。< ……此处隐藏17921个字……自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

6、重视数学应用意识及应用本事的培养。

高一数学教学计划15

一、设计理念

新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。

二、教材分析

本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。

三、学情分析

【年龄特点】:

假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。

【认知优点】

一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。

【学习难点】

但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。

四、教学目标

? 知识与技能:

1. 理解子集、V图、真子集、空集的概念。

2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。

3. 能够区分集合间的包含关系与元素与集合的属于关系。

? 过程与方法:

1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、

分析、归纳的能力。

2. 培养学生用数学符号语言、图形语言进行交流的能力。

? 情感态度与价值观:

1.激发学生学习的兴趣,图形、符号所带来的魅力。

2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。

五、教学重、难点

重点:

集合间基本关系。

难点:

类比实数间的关系研究集合间的关系。

六、教学手段

PPT辅助教学

七、教法、学法

? 教法:

探究式教学、讲练式教学

遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。

? 学法:

自主探究、类比学习、合作交流

教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。

八、课型、课时

课型:新授课

课时:一课时

九、教学过程

(一)教学流程图

(二)教学详细过程

1..回顾就知,引出新知

问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?

2.合作交流,探究新知

问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?

(1)A={1,2,3},B={1,2,3,4,5};

(2)设A为新华中学高一(2)班女生的全体组成集合;B为这个班学生的全体组成集合;

(3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}

【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的子集,记作:A?B(B?A),读作A含于B或者B包含A.

在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:

问题三:你能举出几个集合,并说出它们之间的包含关系吗?

【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。

问题四:对于题目中的第3小题中的集合,你有什么发现吗?

【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。

用集合的概念对相等做进一步的描述:

如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。

强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B

【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。

【师生活动】?,并规定空集是任何集合的

4.思维拓展,讨论新知

问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明

【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是

问题七:经过以上集合之间关系的学习,你有什么结论?

【师生活动】:师生讨论得出结论:

(1)任何一个集合都是它本身的子集,即A?A

5.练习反馈,培养能力

例1写出集合{a,b}的所有子集,并指出哪些是真子集

例2用适当的符号填空

(1)a_{a,b,c}

(2){0,1}_N

(3){2,1}_{X∣X2-3X+2=0}

6.课堂小结,布置作业

这节课你学到了哪些知识?

小结 知识上:

能力上:

情感上:

作业:必做题:P8,3

思考题:实数间有运算,那集合呢?

十、板书设计

十一、教学反思

《高一数学教学计划(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式